

Climate Risk-Informed Decision Making and Demand for Data

Seventeenth Session of the Forum on Regional Climate Monitoring Assessment and Prediction for Asia (FOCRAII)

Charles Rodgers, Asian Development Bank

Why Climate Risk-Informed Decision-Making? Unanticipated impacts of weather events and climate change can negatively impact public infrastructure in many ways:

- Reduced project service lifetime
- Reduced reliability of service delivery
- Increased cost, extent and frequency of maintenance and upgrade operations
- Reduced financial and economic benefit to cost ratio (among others)

ADB Climate and Disaster Risk Management Framework

Climate Adaptive Design and Management – Adaptive Pathways

ADB

Source: UNESCO (2018)

Indicative Climate Data Report

Variables selected on the basis of project type:	Energy transmission, distribution, and generation (ex. hydropower)	Hydropower	Roads and bridges	Water supply and sanitation	Urban transport	Agriculture and irrigation
Annual Variables						
Mean surface temperature	✓	~	✓	√	~	 ✓
Minimum surface temperature		07	~	S	~	
Maximum surface temperature	~	2	~	1	~	
Total precipitation		~				✓
Total evaporation, transpiration, sublimation		S 0.8		8 N		~
Number of frost days		2 27 2 77	~		2	
Growing season length		a 0.		a 0		✓
Seasonal Variables						
Mean surface temperature		~				~
Minimum surface temperature					3	
Maximum surface temperature					-	
Total precipitation		~				×
Total evaporation, transpiration, sublimation		:		e0	3	~
Change Combinations					-	
Annual precipitation and temperature change		V		•		×
Seasonal precipitation and temperature change		~		v	3	× ·
Extreme Events			./		./	
KXTday: annual max 1-day precipitation		v	V	V	v	v

Indicative Climate Data Report – Expanded View

INFORMATION SOURCES TO SUPPORT ADB CLIMATE RISK ASSESSMENTS AND MANAGEMENT

TECHNICAL NOTE

SEPTEMBER 2018

ASIAN DEVELOPMENT BANK

Priority Data Need: Short Term High Intensity Precipitation

Extreme Precipitation Magnitude vs Water Vapor

Figure source: Figure 3a in Kunkel, Stevens, et al. 2019: Observed climatological relationships of extreme daily precipitation events and precipitable water in the contiguous United States. *Geophysical Research Letters*, submitted.

R1: Specify project objectives

R2: Check for contextual climate risks at the project concept stage and adjust the site selection or design accordingly

R3: Obtain the design value(s) from historical rainfall data by(a) collating and ensuring the quality of observed data for site;(b) extracting the annual maximum series;(c) fitting an extreme-value distribution to (b); and(d) calculating the rainfall amount for the required return period with standard error of the estimate.

R4: Download climate change scenarios for the design variable(s)

R5: Calculate design values for specified baseline and future periods by repeating Steps R3a to R3d using climate-model output

R6: Derive the change factor for the specified design variable(s) and return period(s)

R7: Calculate the new design value for the future period at the specified return period and confidence level

Source: ADB (2020) Manual on Climate Change Adjustments for Detailed Engineering Design of Roads Using Examples from Viet Nam

Demand for Climate Data – Summary and Looking Forward

- Historically, climate adaptation planning involved the projection of basic climatic variables (temperature, precipitation) at seasonal resolution. By contrast, scenarios must increasingly be *decision-led*
- The realistic range of plausible future conditions is more important than any (hypothetical) "best" projection
- There is a growing need to understand and project the *behaviour of extremes* (frequency, magnitude), which involves the need to achieve consensus on credible methodologies
- There is a growing need for composite indices for application in specific sectors: Agriculture: potential evapo-transpiration, standardized precipitation-evaporation index Water resources: climatic water balance at basin scale

All development projects: metabolic heat indices (e.g., wet bulb temperature)

• Climate Risk Informed Decision-making requires that we "...expand(...) the conception of climate models: not simply as prediction machines, but as scenario generators, sources of insight into complex system behavior, and aids to critical thinking" (Weaver and co-authors 2013)

